人脸识别硬件

为您提供益光Z新资讯

新闻中心 /News

新闻中心 /News

当前智能计算技术发展态势主要有如下特征。

2020-04-11

一,大家都在积极探索高效智能处理芯片体系结构及实现技术。例如传统通用芯片、FPGA 半定制芯片、全定制芯片或者类脑芯片。


总体上来讲,专用的 ASIC 芯片具有一定优势,测试表明,专用 ASIC 的能效比(性能/瓦)明显优于 CPU 和 GPU,同时,ASIC 芯片发展前景也比较好,预计 2025 年市场规模将超过 CPU 和 GPU 的总和。


二,努力探索新型体系结构。比如分析人工智能计算特点,凝练高效人工智能计算指令集;面向智能计算的高速互联拓扑;存算一体、算通融合、异质异构计算架构;适用 AI 其它模型的体系架构,如图计算、规则推理等。此外,还有探索高效好用的智能计算的软件生态,比如智能计算软件框架,包括高效语言编译、基础算法库等等,努力打造软硬一体的智能生态计算。


在云侧,计算机产业几大优势企业正在竞争主导地位,比如谷歌的定制专用智能芯片 TPU,英特尔和微软试图采用 CPU+FPGA 争夺市场,华为发布专用智能芯片昇腾 910。


在端侧,各大公司纷纷推出 ASIC 芯片架构,ARM、英特尔、苹果、高通等企业在芯片上做出了很大的努力,中国企业的典型代表有华为、寒武纪、比特大陆。


同时,各公司纷纷开源智能计算软件框架,当前的态势是群雄竞争,谷歌领跑。


我前面讲过,传统计算已经形成了软硬件抱团竞争的垄断态势,但是智能计算当前的态势是,软硬件还相对独立,尚未形成软硬一体抱团竞争的垄断局面。


我们应抓住自主、创新的发展机遇


人工智能应用对基础软硬件平台技术提出了很大的挑战,目前智能计算的生态尚未形成垄断的态势。正因为这样,就给我们创造了机遇,要抓住自主、创新发展智能生态计算的机遇期。智能计算还有很多理论性的难题有待攻克,谁能在这些难题上率先取得突破,谁就有可能牵引新结构体系的发展。


夯实基础,防止重蹈历史覆辙


我想谈的第三点是夯实基础、防止重蹈历史覆辙。现在人工智能非常热,人工智能发展也很快。


我国人工智能发展面临大好机遇


我国人工智能计算发展面临一个很好的机遇。


我国应用需求旺盛,应用成果多。2016 年,中国数字经济居全球第二,占 GDP 比重超 30%,互联网应用发展非常好。2018 年,中国人工智能企业数量在全球排名第二,是全球人工智能投融资规模Z 大 的国家之一。


同时,我们也拥有一支实力强的科技队伍。AI Index 2018 显示,我国在人工智能领域发表论文的数量已经超过美国。人工智能领域的专利申请排名前十的国家,中国也是排在 第 一 。


在基础领域,我们也取得了可喜的成果。我前面提到,在传统领域,比如芯片技术上,特别是在微处理器阶段,我们的落后导致我们的基础必须要依靠别人。而现在围绕智能芯片的研发,2018 年,中国有 7 家企业进入全球排名的前 24 名。智能计算软件框架,中国企业也有领头,比如百度的 PaddlePaddle、腾讯的 Angel、阿里的 X-DeepLearning 等。我们有很好的起点。


严峻挑战


但是我们也面临着严峻的挑战。


一,原始创新能力不足。我们的研究跟踪多、创新少,量有优势、质量上明显不够。


二,短板明显。智能芯片产品主要面向推理,云侧训练芯片竞争能力弱,高性能 GPU、FPGA 仍依靠引进。


三,从事技术平台和处理器芯片的企业数量比较少。无论是在计算基础平台还是处理器芯片研制上,我们的企业占的比例都较少。


四,应用开发主要基于国外智能计算软件框架之上。


五,我国自主智能计算软件框架的影响力与国际相比存在较 大差距。聚集在上面的第三方应用少,以自用为主。从 Github 活跃度上可以看到,百度 PaddlePaddle、腾讯 Angel、阿里 X-DeepLearning 与谷歌 TensorFlow 等差距较 大。


除了以上几点,Z 大 的挑战是,虽然我国软硬件研发能力已有质的提升,但研发产品的竞争力仍然不强。如果我们不抓住机遇,夯实基础,下大力气去打造有竞争力的抱团竞争的智能计算生态,仍然只是注重近期效益,发展应用,我们就有可能重蹈传统计算产业的覆辙。一旦在人工智能领域、智能计算领域也形成若干个这样的垄断生态,那我们又要变得被动。


如何应对目前的艰难局面


对于如何应对,我觉得有如下几点思考。


一,学术界要面向智能计算挑战问题,加大国内外合作,持之以恒,以基础理论、计算模型和算法上的创新突破,牵引体系结构的创新。


二,产业界要推进产业联盟(芯片、平台、应用商),发挥既有骨干企业优势,构建上下游协同的产业链,集中力量打造我国有竞争力的智能计算生态。关键是集聚应用、滚动发展、形成规模,规模越大,生态会越稳定。


三,管理部门要综合施策。一是激励骨干企业加大对基础平台的投入;二是引导学术界、企业、应用部门基于自主计算生态做研究和开发;三是成立智能产业发展大基金,市场和政府协同,以目标为导向,推动产学研联合。特别是要关注当前的一些小微创新。


四是教育部门要合理部署多层次人工智能领域人才培养,在人工智能领域,从当前来看,虽然大家都很重视,但无论是人才总数还是基础人才数量,我国和国际存在很大差距。


标签

Z近浏览:

相关产品

相关新闻

Copyright © 深圳市益光科技有限公司All rights reserved 备案号: 粤ICP备18001662号 主要从事于 人脸面板机,人脸考勤机,人脸识别硬件 , 欢迎来电咨询!